翻訳と辞書
Words near each other
・ Giovanni Bacile
・ Giovanni Badile
・ Giovanni Baglione
・ Giovanni Baldelli
・ Giovanni Balducci
・ Giovanni Baleison
・ Giovanni Balestra
・ Giovanni Baptista Ferrari
・ Giovanni Baratta
・ Giovanni Barberis
・ Giovanni Bardis
・ Giovanni Baronzio
・ Giovanni Agusta
・ Giovanni Alberghetti
・ Giovanni Alberti
Giovanni Alberti (mathematician)
・ Giovanni Alberto Ristori
・ Giovanni Aldini
・ Giovanni Aldobrandini
・ Giovanni Alessandro Brambilla
・ Giovanni Alfonso Borelli
・ Giovanni Aliprandi
・ Giovanni Allevi
・ Giovanni Alloatti
・ Giovanni Aloi
・ Giovanni Ambrogio Bevilacqua
・ Giovanni Ambrogio de Predis
・ Giovanni Ambrogio Figino
・ Giovanni Ameglio
・ Giovanni Amelino-Camelia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Giovanni Alberti (mathematician) : ウィキペディア英語版
Giovanni Alberti (mathematician)

Giovanni Alberti (born March 21, 1965) is an Italian mathematician who is active in the fields of calculus of variations, real analysis and geometric measure theory.
==Scientific activity==
Alberti has studied at Scuola Normale Superiore under the guide of Giuseppe Buttazzo and Ennio De Giorgi; he is professor of mathematics at the University of Pisa. Alberti is mostly known for two remarkable theorems he proved at the beginning of his career, that eventually found applications in various branches of modern mathematical analysis. The first is a very general Lusin type theorem for gradients asserting that every Borel vector field can be realized as the gradient of a continuously differentiable function outside a closed subset of a priori prescribed (small) measure.〔(【引用サイトリンク】url=http://www.sciencedirect.com/science/article/pii/002212369190104D )〕 The second asserts the rank-one property of the distributional derivatives of functions with bounded variation, thereby verifying a conjecture of De Giorgi.〔(【引用サイトリンク】url=http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8247227&fulltextType=RA&fileId=S030821050002566X )〕 This theorem has found several applications, as for instance in the Ambrosio's proof of an open problem posed by Di Perna and Lions concerning the well-posedness of the continuity equation involving BV vector fields.〔(【引用サイトリンク】url=http://link.springer.com/article/10.1007/s00222-004-0367-2 )〕 This result is nowadays commonly known as Alberti's rank-one theorem and its proof rests of a very delicate use of sophisticated tools from geometric measure theory; in particular, it makes use of the concept of tangent measure to another measure.〔(【引用サイトリンク】url=http://www.encyclopediaofmath.org/index.php/Function_of_bounded_variation#Alberti.27s_rank-one_theorem )〕〔(【引用サイトリンク】url=http://link.springer.com/chapter/10.1007%2F978-3-540-76781-7_2 )〕 Subsequently, Alberti has given contributions to the study of various aspects of Ginzburg-Landau vortices and of the continuity equation.〔(【引用サイトリンク】url=http://umi.dm.unibo.it/caccioppoli/vincitori-en.html#2002 )

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Giovanni Alberti (mathematician)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.